3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA employees Broderic J. Gonzalez, left, and David W. Shank install pieces of a 7-foot wing model in preparation for testing in the 14-by-22-Foot Subsonic Wind Tunnel at NASA’s Langley Research Center in Hampton, Virginia, in May 2025. The lessons learned will be shared with the public to support advanced air mobility aircraft development. NASA/Mark KnoppThe advanced air mobility industry is currently working to produce novel aircraft ranging from air taxis to autonomous cargo drones, and all of those designs will require extensive testing – which is why NASA is working to give them a head-start by studying a special kind of model wing. The wing is a scale model of a design used in a type of aircraft called a “tiltwing,” which can swing its wing and rotors from vertical to horizontal. This allows the aircraft to take off, hover, and land like a helicopter, or fly like a fixed-wing airplane. This design enables versatility in a range of operating environments.
Several companies are working on tiltwings, but NASA’s research into the scale wing will also impact nearly all types of advanced air mobility aircraft designs.
“NASA research supporting advanced air mobility demonstrates the agency’s commitment to supporting this rapidly growing industry,” said Brandon Litherland, principal investigator for the test at NASA’s Langley Research Center in Hampton, Virginia. “Tool improvements in these areas will greatly improve our ability to accurately predict the performance of new advanced air mobility aircraft, which supports the adoption of promising designs. Gaining confidence through testing ensures we can identify safe operating conditions for these new aircraft.”
NASA researcher Norman W. Schaeffler adjusts a propellor, which is part of a 7-foot wing model that was recently tested at NASA’s Langley Research Center in Hampton, Virginia. In May and June, NASA researchers tested the wing in the 14-by-22-Foot Subsonic Wind Tunnel to collect data on critical propeller-wing interactions. The lessons learned will be shared with the public to support advanced air mobility aircraft development.NASA/Mark KnoppIn May and June, NASA tested a 7-foot wing model with multiple propellers in the 14-by-22-Foot Subsonic Wind Tunnel at Langley. The model is a “semispan,” or the right half of a complete wing. Understanding how multiple propellers and the wing interact under various speeds and conditions provides valuable insight for the advanced air mobility industry. This information supports improved aircraft designs and enhances the analysis tools used to assess the safety of future designs.
This work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
“This tiltwing test provides a unique database to validate the next generation of design tools for use by the broader advanced air mobility community,” said Norm Schaeffler, the test director, based at Langley. “Having design tools validated for a broad range of aircraft will accelerate future design cycles and enable informed decisions about aerodynamic and acoustic performance.”
In May and June, NASA researchers tested a 7-foot wing model in the 14-by-22-Foot Subsonic Wind Tunnel at NASA’s Langley Research Center in Hampton, Virginia. The team collected data on critical propeller-wing interactions over the course of several weeks.NASA/Mark KnoppThe wing is outfitted with over 700 sensors designed to measure pressure distribution, along with several other types of tools to help researchers collect data from the wing and propeller interactions. The wing is mounted on special sensors to measure the forces applied to the model. Sensors in each motor-propeller hub to measure the forces acting on the components independently.
The model was mounted on a turntable inside the wind tunnel, so the team could collect data at different wing tilt angles, flap positions, and rotation rates. The team also varied the tunnel wind speed and adjusted the relative positions of the propellers.
Researchers collected data relevant to cruise, hover, and transition conditions for advanced air mobility aircraft. Once they analyze this data, the information will be released to industry on NASA’s website.
Share
Details
Last Updated Aug 07, 2025 EditorDede DiniusContactTeresa [email protected]Related Terms
Armstrong Flight Research CenterAdvanced Air MobilityAdvanced Air Vehicles ProgramAeronauticsDrones & YouLangley Research CenterRevolutionary Vertical Lift TechnologyExplore More
3 min readThree NASA Langley Employees Win Prestigious Silver Snoopy Awards
Article 3 hours ago 3 min readNASA Drop Test Supports Safer Air Taxi Design and Certification
Article 1 week ago 3 min readNASA Rehearses How to Measure X-59’s Noise Levels
Article 2 weeks ago Keep ExploringDiscover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
Hence then, the article about nasa uses wind tunnel to test advanced air mobility aircraft wing was published today ( ) and is available on NASA ( Middle East ) The editorial team at PressBee has edited and verified it, and it may have been modified, fully republished, or quoted. You can read and follow the updates of this news or article from its original source.
Read More Details
Finally We wish PressBee provided you with enough information of ( NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing )
Also on site :
- Trump Wants To”Unleash Hell” In 2026; POTUS Tries To Go Full Maximus With A Misguided ‘Gladiator’ Flex
- GCE Global Solutions Corp. Announces Strategic Acquisition of GCE Payroll Advisers Inc. to Strengthen Global EOR and Payroll Platform
- Isiah Whitlock Jr. Dies: ‘The Wire’ Actor & Frequent Spike Lee Collaborator Was 71
